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PARAMETERS OF A COUNTERCURRENT THERMAL-DIFFUSION
APPARATUS WITH FLOW CLOSURE AND SAMPLING

G. D. Rabinovich and A. V. Suvorov UDC 621.039.341.6

Formulas have been derived for the optimum apparatus parameters.

An apparatus has been described [1] based on a planar thermal-diffusion column, with
the mixture pumped in opposite directions at the ends. A closed loop can be used (Fig. 1b)
or partial or complete product tapoff (Fig. la and c). The apparatus and the calculation
method [2] were devised for separating petroleum oil fractions. Ohe can evaluate the per-
formance in separating other liquid or gas mixtures under laboratory or plant conditions by
means of a more general method, which has been used in considering apparatus with complete
product removal (Fig. lc) [3, 4] or with complete product return (Fig. 1b) [5]. Our purpose
is a theoretical analysis of the case where part of the material is returned (Fig. la).

We consider the stationary separation of a binary liquid mixture, where the concentra-
tion changes occur in the range allowing of the approximation c(l-c) & a + bc, which includes
important cases such as removing a minor impurity when the content of the main component is
high (c(1—c) a 1—c) and enrichment when there is only a low content of the main component
(c(i—) & c). The model [3-5] shows that the target component passes through the separating
region:
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Fig. 1. Scheme for supplying and removing mixture:
a) tapoff with flow closure; b) closed system with-
out tapoff; c) countercurrent without closure.

with the transport in the stationary state constant and the same for any horizontal section,
so (1) can be differentiated with respect to y to get an equation for the concentration dis-
tribution in the separation region:

) .
£ _p Ly, (2)
dy? dy

where
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There are changes in the contents of the target component in the upper channel ocgdcg
and the lower one ojdcy in the part dx because of the transport tdx/B through the separating
region in this part, so when one incorporates the opposite flow directions, one has

T
Bo,

T

(4)

dx = de,,

=y, Bo;

= dCi .
y=0

One solves (2) with (4) to get [4] the following expressions for the concentration distribu-
tions in the two channels:
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To determine D; and D,, we incorporate the features of mixture and output, which govern
the conditions at the ends. In this case (Fig. la),

Cole—o=Cor Celgey = Cilgy - (8)

Then (5) and (6) with (8) give
D, = (co +%)/( 1+ (-(-Pg— —1 )(1 —e%) exp (bye)), (9)
D, =(c.,+-Z—)( 1 —%) e? /(1—!— (—(:c—l——— 1 )(1 —e“’)exp(bye)). (10)
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We substitute (9) and (10) into (5) and (6) to get formulas for the concentration
distributions: , -

L+ (= =1 )0 =) exp(on)

2 . e kel 5 (11)
ce+ ¢ + e(p’
b ( b) l—i—(-——-b————l)(l—-ecp)exp(bye)
Px;
/ e® 4 ——é—-(e¢§-—-e¢)
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oLt L+ (— = 1 J1—=e" exp by (12)
. P¥; '

Ohe also incorporates the balance relations for the total amount of mixture

Ty = 0; + 0, (13)

and for the extracted component
Co0 = 0,¢; + 0pCp. (14)

The concentration of the component cji in the reject flow is restricted by the condition
for equilibrium at T = 0 with the incoming flow c,, which gives [6]

atbe, (15)
ik exp (by.) = a,

where c? is the equilibrium concentration.

k
The approach to the equilibrium concentration in the reject flow is [7] defined by

Cin— C% (16)
v= co—cCi
Then (12) and (16) give
q;:]/(l-}-( b ——l)(l—e“’)exp(bye)» a7)
. Px; y
Then (17) and (11) with § = 1 give an expression for the exit concentration:
a
Ca'+“7;— ,
=%y, (18)
a
€ + —
b

Subsequently, the total amount of mixture ¢, entering the apparatus is taken as constant
and we use the ratio of the product flow to the total amount of mixture k. We have o, = og
for flow closure and from (13) and (14)

yj Co— C;
p=—P 0T TR (19)
Oe Cor — Cin

The analysis of (18) is substantially simplified if we use the ratio of the actual
throughput to the maximal corresponding to the equilibrium concentration together with the
maximal k:

0 = e s kmaxzo—ﬂ;—lﬁ:i: CO—C;;; (20)
0

Opmas o, P

From (7), (13)-(16), (19), and (20) we have

bk ko 1—0 (21)
L ARPULA B I ERELE, I =-—
xpl—k( +a—l) v 11—k

Then (21) with (18) gives a formula for ye/kp, which defines the area of the apparatus per
unit product:
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Fig. 2. Diagram for choosing optimal
apparatus parameters with partial mix-
ture recycling: 1) ye/kp = £1(k), qe =
105 2) Ye/KE)= fz(k)s de = 100; 3)

Ye/Kp = f3(k), qe = 1000; 4) ye = ¢,(k),
qe = 100, gg = 1000, 5) yo = ¢,(k),
qe = 10.
_&_____é/e____l_:k___m(qe_l:‘l), (22)
%y b k(1+ k(@—1) 1—k
In removing a minor impurity, where a = 1 and b = —1, we have from (15) and (19) that
l—a l1—c¢ (23)
= - kmax: e ’ e = ’
o = exp (—¥e), e T,
and (23) becomes
Ye _y, L—k 1n<qe =0 ) (24)
%p k(1 + k(e — 1)) l—Fk

It follows from (24) that the working area per unit product in unit time is dependent
on k for given qg and yg; calculations show that each k corresponds to a yg for which yo/k
is minimal. Figure 2 shows curves for choosing these parameters, which is derived from (22)
for some qo. The diagram can be used with a given k to determine y, and the corresponding
minimal ye/ke. The optimum ye is almost independent of g for qg > 100, while as y, de-
creases, which determines the height, one requires a smaller area per unit product. However,
k decreases at the same time, which leads to an increase in the amount of discarded mixture.

NOTATION

d, thermal-diffusion constant; B, bulk expansion coefficient; §, distance between heated
and cooled surfaces; p, density, o, mass rate of flow through channel; n, dynamic viscosity;
B, apparatus length; T, and T;, temperatures of the heated and cooled surfaces; AT = T,-T;;

T = 1/,{(T,~T,); z, vertical coordinate; x, longitudinal coordinate; c, mass concentration.
Subscripts: e, upper channel, i, lower channel, 0, initial value, k, exit from apparatus.
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